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ABSTRACT: Using vertical temperature profiles obtained from upper-air observations or numerical weather prediction

models, the Bourgouin technique calculates areas of positivemelting energy and negative refreezing energy for determining

precipitation type. Energies are proportional to the product of themean temperature of a layer and its depth. Layers warmer

than 08C consist of positive energy; those colder than 08C consist of negative energy. Sufficient melting or freezing energy

in a layer can produce a phase change in a falling hydrometeor. The Bourgouin technique utilizes these energies to de-

termine the likelihood of rain (RA) versus snow (SN) given a surface-based melting layer and ice pellets (PL) versus

freezing rain (FZRA) or RA given an elevated melting layer. The Bourgouin approach was developed from a relatively

small dataset but has been widely utilized by operational forecasters and in postprocessing of NWP output. Recent analysis

with a larger dataset suggests ways to improve the original technique, especially when discriminating PL fromFZRAorRA.

This and several other issues are addressed by a modified version of the Bourgouin technique described in this article.

Additional enhancements include use of the wet-bulb profile rather than temperature, a check for heterogeneous ice nu-

cleation, and output that includes probabilities of four different weather types (RA, SN, FZRA, PL) rather than the single

most likely type. Together these revisions result in improved performance and provide a more viable and valuable tool for

precipitation-type forecasts. Several National Weather Service forecast offices have successfully utilized the revised tool in

recent winters.

SIGNIFICANCE STATEMENT: This article describes an updated version of a widely used technique for predicting

winter precipitation type at the surface. Verification statistics suggest the revised technique outperforms the original

version. It also compares favorably to a more sophisticated approach for postprocessing of model output yet is simple

enough for operational meteorologists to use for making real-time, critical forecast adjustments. This updated technique

was adapted as the basis for precipitation-type forecasts in the NWSNational Blend of Models starting with version 3.2.

It also is the approach that several NWS offices have adapted for their winter forecasts in recent years. Future efforts

should seek to further refine this technique and make greater use of its inherent probabilistic information.

KEYWORDS: Forecast verification/skill; Forecasting; Forecasting techniques; Operational forecasting; Probability

forecasts/models/distribution; Mixed precipitation; Freezing precipitation; Winter/cool season

1. Introduction

Determination of winter precipitation type is a significant

forecast challenge (Ralph et al. 2005), especially in thermal

environments where rain (RA), snow (SN), freezing rain

(FZRA), or ice pellets in the form of sleet (PL) all may be

possible. Impacts to society and the economy from different

precipitation types also can vary significantly. For example, a

few millimeters of liquid-equivalent precipitation in the form

of FZRA could produce much greater impacts than this same

amount falling as RA, SN, or PL (Changnon 2003).

This challenge is compounded by increasing demands for

high temporal and spatial resolution gridded forecasts. The

NWS provides much of its forecast information through the

National Digital Forecast Database (NDFD; Glahn and Ruth

2003). The NDFD offers forecasts of sensible weather ele-

ments (e.g., cloud cover, temperature, precipitation type) on a

horizontal grid of 2.5-km resolution, often in hourly incre-

ments. The database is populated and regularly updated by

meteorologists at local NWS offices around the country so that

it reflects current observational trends as well as themost likely

forecast scenario. The portion of the NDFD maintained by

each office contains thousands of grid points.

At longer time ranges NWSmeteorologists rely primarily on

numerical weather prediction models to guide their forecast

decisions. At close time ranges observational datasets play a

larger role. In both cases, deviations from model guidance of-

ten are necessary, though interelement consistency within the

NDFDmust bemaintained. For example, if hourly temperatures

at certain grid points are adjusted from above freezing to below,

the precipitation types and accumulations also must change for

those hours and grid points. In fact, managing the hourly evolu-

tion of precipitation type across thousands of 2.5-km grids is one

of the more challenging tasks an NWS forecaster faces.

The frequent need to adjust away from model guidance also

is what motivates the use of implicit techniques based on ver-

tical thermal profiles rather than explicit techniques utilizing

model microphysics. Reeves et al. (2016) discusses a number of

limitations related to model microphysics schemes. One not

mentioned is that when a model is struggling to match surface

and upper-air observational trends, explicit precipitation-type

output based on its microphysics will misrepresent what is ac-

tually occurring at a particular time and location. Tools forCorresponding author: Kevin Birk, kevin.birk@noaa.gov
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making real-time forecast adjustments rely on the latest ob-

servations and do not have access to the internal microphysics

of a model.

This paper describes a simple but effective implicit tech-

nique to assist in the operational forecasting of precipitation

type. This is based on a revised version of the Bourgouin (2000)

area method, referred to here as the Modified Bourgouin

method. Section 2 describes three precipitation-type algo-

rithms: the spectral bin classifier (Reeves et al. 2016), the tra-

ditional top-down approach used by many NWS offices

(Baumgardt 2000), and the original Bourgouin area method.

Section 3 explores motivations for a revised version of the

Bourgouin approach. Section 4 describes the development

of this revised algorithm. Section 5 shows how the revised

technique performs relative to the other three. Section 6

provides a discussion and conclusions.

2. Precipitation-type algorithms for operational forecasts

a. Precipitation-type environments

Precipitation-type forecasts consider two key questions:

whether there will be ice nucleation and whether there will be

phase changes before hydrometeors reach the surface. The

temperature profile in the lower troposphere can play a large

role in determining the phase change potential (Czys et al.

1996) though the wet-bulb temperature Tw profile can be even

more important (Ramer 1993; Baldwin et al. 1994; Schuur et al.

2012; Reeves et al. 2016) likely because Tw is more represen-

tative of the temperature experienced by particles large

enough to survive evaporation.

Figure 1 summarizes four basic scenarios that can evolve

when ice nucleation does occur. In the simplest case (Fig. 1a)

the entire vertical profile is below freezing which supports SN.

With a surface-based melting layer (layer with Tw above 08C,
Fig. 1b) the outcome is RA and/or SN depending on the depth

and magnitude of that layer. An elevated melting layer

(Fig. 1c) supports SN, FZRA, PL, or mixtures of all three.

With another melting layer at the surface (Fig. 1d), RA re-

places FZRA.

In addition to the temperature or wet-bulb profile, hydro-

meteor sizes also can affect whether a phase change occurs

(Crawford and Stewart 1995; Bernstein 2000; Cortinas 2000;

Rauber et al. 2000, 2001; Robbins and Cortinas 2002;

Changnon 2003; Cortinas et al. 2004; Thériault et al. 2010).

FIG. 1. Wet-bulb temperature Tw profiles typically associated with (a) SN; (b) RA and/or SN; (c) FZRA and/or

PL and/or SN; and (d) as in (c), but with RA instead of FZRA. Layers of melting energy (ME) and refreezing

energy (RE) also are shown. Example heights along the y axis are representative values, but in the real world there

are no limits on how these may vary.
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In real time the hydrometeor size distribution is difficult to

account for given the lack of sampling and thus is neglected in

many precipitation type methods.

b. The spectral bin classifier

One algorithm that does account for hydrometeor size and

has been shown to outperform other common implicit methods

is the spectral bin classifier (SBC; Reeves et al. 2016). The SBC

first considers the potential for ice nucleation then calculates

melting and refreezing rates for hydrometeors of various sizes

as they fall. It chooses one most likely precipitation type out of

six possible categories: SN, RA, FZRA, PL, RASN, and

FZRAPL. It does not provide information regarding the rel-

ative probability of alternate types.

While the SBC explicitly accounts for hydrometeor size

during melting and refreezing, size is not considered during the

initial determination of ice nucleation.Of note, the spectrum of

hydrometeor sizes used by the algorithm is based on a static

and theoretical distribution of drop sizes, not one determined

uniquely for each situation. Additionally, the algorithm

requires a detailed vertical temperature or wet-bulb profile. On

the 2.5-km NDFD grid it would be difficult to adjust in real

time a complete profile at each point. This algorithm therefore

may be more suited to postprocessing of NWP output than

manipulation by operational forecasters. Its skill relative to

other approaches warrants inclusion in this discussion for

comparison purposes.

c. The traditional top-down approach

A simpler approach to diagnosing phase change potential

in a layer is to consider only one temperature variable: the

maximum temperature or wet bulb in the melting layer, and

the minimum temperature or wet bulb in the refreezing layer.

This is the traditional top-down approach used in many NWS

offices (Baumgardt 2000). As with the SBC, this also considers

the potential for ice nucleation. Unlike the SBC it does not

directly account for hydrometeor size. It does allow for certain

combinations of mixed events by providing information re-

garding the relative probability of multiple precipitation types

(RA, SN, FZRA, and PL) rather than trying to determine a

single most likely outcome.

The traditional top-down approach works well for many

scenarios. A key exception would be situations with isothermal

layers in which the maximum or minimum temperature is less

representative of the total melting or refreezing potential.

d. The Bourgouin method

Starting in 2016, some NWS offices have utilized an ap-

proach adapted from Bourgouin (2000). This improves over

the traditional top-down method by accounting for both the

depth and magnitude of a temperature layer, thus properly

calculating the true melting or refreezing potential even in

isothermal layers.

As with the traditional top-down approach, the Bourgouin

technique requires a forecaster to manipulate only two vari-

ables (melting and refreezing energy) to adjust melting and

refreezing potential. The advantage is that these variables

more accurately reflect the phase change potential within a

layer. And while the initial computation of energy values

requires a detailed vertical profile, the use of simple layer-

summary parameters facilitates subsequent real-time adjust-

ments by the forecaster and calculations by the algorithm.

The next section describes the original Bourgouin approach

in greater detail while also explaining several motivations for

an enhanced version of this technique. Section 4 then describes

the process utilized to develop this enhanced version.

3. Addressing limitations of the original Bourgouin area
method

Since its introduction, the Bourgouin technique has been

widely utilized by operational meteorologists via the BUFKIT

program for examining forecast soundings (Mahoney and

Niziol 1997) and in postprocessing of NWP output (Mullens

and McPherson 2017; Wandishin et al. 2005). This technique is

one of several algorithms Manikin (2005) combined into a

single predominant precipitation-type value for use at NCEP

(http://www.wpc.ncep.noaa.gov/wwd/impactgraphics/). Even

so, the original version has a number of limitations that hin-

der its effectiveness. Some of these were discovered through

the use of this tool for operational forecasts. Others were

identified in a previous evaluation (Reeves et al. 2014) or

anticipated in the paper which introduced this technique

(Bourgouin 2000). The following discussion summarizes the

original approach and explains motivations for a revised

version of the algorithm.

a. The original Bourgouin area method

The area method assumes that a phase change of a falling

hydrometeor in a melting (or warm, above 08C) or refreezing
(or cold, below 08C) layer is driven by the depth and average

temperature of that layer, the product of which is proportional

to areas on a thermodynamic diagram (Bourgouin 2000). This

provides an easy way to evaluate the negative/refreezing or

positive/melting area in terms of energy (J kg21):

energy area5

ðzu
zl

g

�
T
env

2T
0

T
0

�
dz . (1)

When integrating across an entire melting or freezing layer, zu
would always be a freezing level and zlwould be the next lower

freezing level or, for a surface-based freezing or melting layer,

the surface. Here, T0 is 273.15 K, and Tenv is the environmental

temperature in kelvin at a given level. The result of Eq. (1) thus

is negative for subfreezing layers. However, for the purposes of

this paper both positive/melting and negative/refreezing areas

are expressed as positive values.

Using this approach, a sounding with no positive energy is

classified as SN. If the only melting layer (defined as having at

least 2 J kg21 of positive energy) is surface based, the predic-

tion is RA and/or SN depending on the magnitude of positive

energy in that layer. With an elevated melting layer and

surface-based refreezing layer the options are FZRA and/or

PL depending on the ratio of melting and refreezing energy in

the two layers. An additional surface melting layer would yield

RA in place of FZRA.
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b. Probability of mixed events

Like the SBC, the original Bourgouin approach chooses one

most likely precipitation type out of six possible categories

(SN, RA, FZRA, PL, RASN, and FZRAPL). Since informa-

tion regarding the most likely alternatives would be of value

operationally, the Modified Bourgouin approach always pre-

dicts the probability of all four basic types (RA, SN, FZRA,

and PL). This allows for all varieties of wintry mixes (e.g.,

SNPL, FZRAPL, and FZRAPLSN) and gives information

about the relative contribution from each basic type.

This probability of weather type (PoWT) approach also

addresses other inherent uncertainties, either from NWP

models or observed soundings. Even over a 2.5-km grid box

and the span of 60min, as forecasts are represented in the

NDFD, there can be variations in the vertical thermal profile

and thus in observed precipitation types. The PoWT approach

offers insights regarding the most likely variations across space

and time. In this way it also is more forgiving of observation or

model errors, though like any technique will begin to fail as

these errors become more egregious.

c. Developmental and independent datasets

The Bourgouin technique is a perfect-prog approach (Klein

et al. 1959) derived from a database of surface observations

and upper-air soundings. One factor acknowledged as poten-

tially limiting the effectiveness of the original version is its

relatively small developmental dataset. To establish thresholds

separating FZRA from PL, the study utilized just 20 observa-

tions of PL, 31 of FZRA, and 3 of a mix. For distinguishing RA

and SN the situation was somewhat better, with 53 observa-

tions of SN, 51 of RA, and 15 of amix. The independent dataset

for evaluation of the technique relative to other methods was

even smaller.

To reassess these thresholds, a larger dataset is used. Our

developmental dataset consists of 242 winter precipitation

events across North America prior to 2006 (Table 1). To be

used in the study, the reported precipitation event had to occur

within a 35 km radius and within 61 h of the time of a radio-

sonde observation, and surface observations had to be from

locations with a human observer to ensure PL could be cor-

rectly detected (Landolt et al. 2019). Observations from

Reeves et al. (2014) spanning the years 2002–05 were included

in this dataset after an additional round of quality control.

Many of the cases are from the mid-1980s through the 1990s,

with a few dating back to the late 1970s.

An independent dataset for this new study is compiled from

the years 2006–19. This includes the Reeves et al. (2014) events

from 2006 to 2013. In total, there are 172 winter precipitation

cases across North America in the new independent dataset

(Table 1).

d. Temperature versus wet-bulb temperature

While the original Bourgouin method uses the vertical

temperature profile for the calculation of layer energy, the

revised version uses the Tw profile which likely offers a

better discriminator (Ramer 1993; Baldwin et al. 1994;

Schuur et al. 2012; Reeves et al. 2016) as previously dis-

cussed. Positive and negative Tw energy areas can be

computed by substituting the environmental wet-bulb

temperature (Tw-env) in place of Tenv in Eq. (1). This pro-

vides for the possibility of phase changes due to evapora-

tive cooling in unsaturated layers.

e. Ice nucleation

The original Bourgouin method does not diagnose freezing

drizzle, yet in Figs. 1a and 1c this or freezing rain is the most

likely outcome if ice nucleation does not occur. Several studies

have found that the activation of ice nuclei increases as cloud

top temperatures drop through the range from 288 to 2158C
(Rasmussen et al. 2002; Schichtel 1988; Politovich 1996; Pobanz

et al. 1994; Bernstein 2000).

Given the importance of correctly identifying cases of

freezing precipitation as a result of warmer clouds lacking ice

nucleation, the Modified Bourgouin method includes the same

probability of ice present (ProbIce) calculation used by the

traditional top-down method (Baumgardt et al. 2017). This

assumes layers of a sounding are saturated and capable of

generating precipitation when they exceed 1 km in depth and

have relative humidity with respect to ice (RHIce) greater than

75%. It then assigns a ProbIce percentage based on the mini-

mum temperature in such a layer using these rules as shown

in Fig. 2:

If T#2158C, then ProbIce5 100%, (2a)

If 2158C,T,278C, then

ProbIce520:065T4 2 3:1544T3 2 56:414T2 2 449:6T2 1308,

(2b)

If T$278C, then ProbIce5 0%, (2c)

where T is the temperature in degrees Celsius. If a precipita-

tion generation layer exists above a dry layer with RHIce ,
75% for more than 1500m, sublimation is assumed, and this

upper layer is eliminated from consideration.

f. Hydrometeor size

Unlike the SBC, neither the original nor the Modified

Bourgouin approach directly considers hydrometeor size in

any of its calculations. However, the revised technique does so

indirectly by assuming there is a spectrum of hydrometeors in

any winter precipitation scenario and that larger hydrometeors

require more energy to prompt a complete phase change (Zerr

1997). Thus with increasing amounts of positive (negative)

energy, the chance is greater that all hydrometeors will melt

(refreeze).

TABLE 1. Cases for each precipitation type in the present study.

Precipitation type Developmental dataset Independent dataset

FZRA 124 100

PL 28 14

SNPL 13 23

FZRAPL 53 16

FZRAPLSN 24 19

Total 242 172
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4. Development of the Modified Bourgouin technique

The Modified Bourgouin technique as outlined above has

several improvements over the original:

d a larger developmental and independent dataset;
d use of wet-bulb temperature profiles;
d ability to diagnose freezing precipitation in situations with-

out ice nucleation;
d probabilistic output that accounts for uncertainties in the

spectrum of hydrometeor sizes, forecast or observed sound-

ings, and space and time, and
d allowance for all combinations of wintry mixes.

With these enhancements, there are two key issues that require

greater scrutiny: a new threshold for delineating FZRA or RA

from PL, and a method for determining when to include SN

even with an elevated melting layer.

a. Criteria for FZRA or RA and PL

A key limitation of the relatively small Bourgouin (2000)

developmental dataset is the lack of PL and FZRA cases with

large values of positive energy. This is especially true for PL

events, with only one having more than 150 J kg21. For this

technique, the basic question is howmuch energy is required to

produce a phase change. A related question for PL and FZRA

is whether the magnitude of positive energy in the elevated

melting layer influences the amount of negative energy needed

to refreeze a hydrometeor. The original study suggests a

completely melted hydrometeor requires considerably more

negative energy to refreeze when there is a larger amount of

positive energy. However, given the limited range of positive

energy in the original dataset, this question is worth revisiting

using a larger number of cases.

Figure 3 shows all cases in the new developmental dataset

with FZRA and/or PL. Since the goal here is to determine

thresholds between different precipitation types based off the

Tw profile, only cases with at least an 80% chance of hetero-

geneous ice nucleation were included in the figure. This figure,

similar to Fig. 2 from Bourgouin (2000), plots all events as a

function of the positive/melting and negative/refreezing ener-

gies. However, energies here are based on Tw profiles. For

reference the yellow line shows the original Bourgouin FZRA

versus PL threshold.

There is some overlap of cases as in the original Bourgouin

study, including a zone where FZRA and PL events appear

equally likely, though pure FZRA events become less favored

as negative energy values increase. The goal is to find a func-

tion that best separates pure FZRA events from those con-

taining PL, either as part of a wintry mix or as the sole

precipitation type. Using a two-category, two-dimensional

linear discriminant analysis to classify members of the dataset,

this function was identified as follows:

RE
Tw

5 1171 0:08ME
Tw

, (3)

where RETw represents the wet-bulb refreezing energy

(J kg21) and METw is the wet-bulb melting energy. It is worth

noting that this reflects a smaller dependence on melting en-

ergy magnitudes than in the original technique. This either

implies there is little warming of the liquid water droplet from

additional METw, or that this warming has only a small effect

on whether the hydrometeor will refreeze.

Equation (3) offers a reasonable separation between pure

FZRA cases and those that include PL, especially for cases

in which total melting of all hydrometeors is occurring.

However, a closer examination of Fig. 3 suggests the threshold

between pure FZRA events and those containing PL becomes

much more dependent on the magnitude of the melting energy

for cases possessing weak warm layers that only support par-

tially melted hydrometeors. Further analysis on mixed pre-

cipitation type cases that were misclassified using Eq. (3)

indicated that a majority of these cases occurred when melting

FIG. 2. Probability of heterogeneous ice nucleation in a precipitation generation layer.

Reproduced from Baumgardt et al. (2017).

APRIL 2021 B I RK ET AL . 429

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:54 PM UTC



energies were less than 30 J kg21. Therefore, the data suggest

that as melting energies drop below 30 J kg21, it becomes in-

creasingly likely that some hydrometeors maintain a frozen

nucleus. This aligns with previous studies, including Reeves

et al. (2016), which also found that partially melted hydrome-

teors more readily refreeze to PL. A separate function to dis-

criminate pure FZRA events from those also containing PL

was investigated for these partial melting cases and through

linear discriminant analysis was found to be

RE
Tw

5 31:41 2:9ME
Tw

. (4)

As a final step, a logarithmic function was fit to Eqs. (3) and (4),

thus making our final function used to differentiate pure

FZRA events from those that include PL as follows:

RE
Tw

5 411 17:9 ln(ME
Tw

1 1) . (5)

Note that 1 is added to theMETw to ensure that RETw does not

go negative as the METw approaches zero. This line is illus-

trated in Fig. 3.

Figure 4 shows distributions of elevated METw along with

the surface layer RETw for FZRA, PL, and mixed events from

the developmental dataset.While there is considerable overlap

in METw magnitudes for these events, there is little to no

overlap in RETw magnitudes between the two pure precipita-

tion types. Pure FZRA events also have significantly less RETw

than events containing any PL. Therefore, RETw is the most

important predictor for the occurrence of PL once the hydro-

meteor is totally melted.

While Eq. (5) represents the primary separation between

pure FZRA events and those with at least some PL, it also is

helpful to identify zones where one is more likely or both are

equally likely. Equation (6) describes these zones, which also

are illustrated in Fig. 5:

FZRAdominant:

RE
Tw

, 411 17:9 ln(ME
Tw

1 1),
(6a)

Equal chances PL andFZRA:

411 17:9 ln(ME
Tw

1 1)#RE
Tw

# 1701 0:08ME
Tw

,
(6b)

PL dominant:RE
Tw

. 1701 0:08ME
Tw

. (6c)

While the lower threshold [Eq. (6a)] is simply our derived

logarithmic function from Eq. (5), the upper threshold defined

here represents the point at which the chances of having an

event of pure PL exceeds that of one mixed with FZRA. The

RETw of 170 J kg21 in Eq. (6c) represents the distribution

crossing of the highest 30th percentile of mixed FZRA events

and the lowest 30th percentile of pure PL events. Since this

transition does not appear to follow a logarithmic function, we

use a linear threshold with the same slope as defined in Eq. (3)

above. This threshold also provided the best verification using

the developmental dataset.

Since Eqs. (5) and (6) do not correctly classify every event

deterministically, the use of probabilities can improve this. In

the zone of equal chances shown in Eq. (6b) we define the

probabilities of FZRA and PL to both be 100%. Above and

below this zone, the probabilities of the less favored type lin-

early decrease from 100% to below 20%. The threshold above

which cases containing FZRA in the observation dropped

below 20% was when RETw . 208 1 0.08METw, where

FIG. 3. Observations in the developmental dataset as a function of melting and refreezing wet-bulb energy. The

yellow line is the Bourgouin (2000) function to separate FZRA from PL. The black line is the new threshold

between pure FZRA and mixes containing PL.
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208 J kg21 is approximately the 80th percentile of the RETw

from the distribution of wintry mixes containing FZRA. A

linear best fit function that dropped the probabilitiy of FZRA

(ProbFZRA) in this matter was found to be

ProbFZRA522:1RE
Tw

1 0:2ME
Tw

1 458, (7)

with results constrained to values between 0 and 100.

ProbFZRA becomes ProbRA, when the surface Tw . 08C.

For FZRA, situations with barely any positive energy re-

quire special attention. In these cases PL and SN become in-

creasingly favored, either because hydrometeors are only

partially melted and thus easier to refreeze (Czys et al. 1996;

Rauber et al. 2001; Reeves et al. 2016) or because hydrome-

teors experience little melting at all. To avoid over forecasting

FZRA, the result from Eq. (7) is multiplied by 20% of the

METw when melting energy is ,5 J kg21 (approximately the

10th percentile of METw for cases with FZRA). This is

FIG. 4. Wet-bulb melting and refreezing energy (ME and RE) for each precipitation type in the developmental dataset.

FIG. 5. As in Fig. 3,. The shaded transition zones are used probabilistically to discriminate between FZRA and PL.
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supported by the developmental dataset which shows the

chances for cases involving FZRA falling at a rate near 20% for

each 1 J kg21 drop in the METw.

Probabilities for PL can be determined in a similar manner.

Assuming melting energy is nonzero, the chance of PL in the

observation drops below 20% for RETw , 83 1 0.08METw,

where 83 J kg21 is approximately the 20th percentile of RETw

from the distribution of wintry mixes with PL. Fitting this

equation to the same logarithmic function in Eq. (5) results in

the 20% threshold for PL in the observation to be RETw, 71
17.9 ln(METw 1 1). This function along with Eq. (6a) is used to

derive the probability of PL (ProbPL) as follows:

ProbPL5 2:3RE
Tw

2 42 ln(ME
Tw

1 1)1 3 , (8)

with results constrained to values between 0 and 100.

As a final step, the ProbIce adjustment is applied to results of

Eqs. (7) and (8). ProbFZRA is adjusted by multiplying by

ProbIce/100, then adding (100 2 ProbIce). ProbPL is scaled

downward via multiplication by ProbIce/100. The final prob-

abilities again are constrained between 0 and 100.

The process of deriving probabilities for FZRA and PL from

the melting and refreezing energies, along with the presence of

ice, does result in a rather wide zone of possible mixed pre-

cipitation forecasts, as illustrated in Fig. 5. However, as pre-

viously mentioned, this is desirable since mixes of the two

precipitation types are routinely observed in nature. The

transition zone also captures the difference between pure

FZRA and PL events.

b. Criteria for snow in wintry mixes

Most precipitation type algorithms do not attempt to iden-

tify the potential of SN in wintry mixes, especially in cases

featuring an elevated warm layer. Recall that this is the case

with the original Bourgouin technique, where only a forecast

for FZRA, PL, or amix of the two is possible when the elevated

warm layer has more than 2 J kg21 (Bourgouin 2000). Given

that SN can be observed as part of a wintry mix, we seek to

determine the METw magnitudes favorable for such. Figure 4

indicates that for all the mixed precipitation cases in which SN

was observed (rightmost two types in Fig. 4), themedianMETw

values were near or just below 10 J kg21. This was in sharp

contrast to cases void of SN, which were found to have sig-

nificantly higher METw magnitudes. This suggests there is a

threshold of METw that favors at least partial melting of all

hydrometers, regardless of size.

Figures 6 and 7 display mixed precipitation cases with and

without SN, respectively. These are similar to Fig. 5 but with

the coordinates switched. In these figures, once METw exceeds

12 J kg21 the number of cases with SN decreases significantly.

In fact, 60% of the cases with SN occurred with METw at or

below 12 J kg21, and 75% occurred with METw at or below

20 J kg21. This suggests that total melting of all hydrometers

may not occur until METw exceeds 20 J kg21, which is higher

than identified in Bourgouin (2000).

Interestingly, seven events had SN reported with METw in

excess of 30 J kg21. Four of these hadMETw over 89 J kg21. It is

unlikely that hydrometeors of any size would remain frozen

with so much melting energy (Bourgouin 2000). We therefore

explored the possibility this SN was generated in the cold

surface layer and found the average RETw in these cases to be

173 J kg21. This suggests these events had very cold and deep

surface layers supportive of heterogeneous nucleation and SN

generation in the cloud beneath the melting layer.

Given our goal is to identify a METw threshold to differen-

tiate mixed precipitation events with SN from those without,

the seven cases with surface-layer snow generation were re-

moved from this analysis. Similarly, we removed the null

snow cases that possessed METw in excess of 30 J kg21. This

left a total of 30 mixed events with SN and 54 without.

FIG. 6. Mixed precipitation cases including SN as a function of melting and refreezing wet-

bulb energies (METw and RETw). The dark shaded blue color represents the threshold used to

discriminate between wintry mixes containing SN vs those that did not.
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Figure 8 provides METw distributions for these two samples.

While the two distributions do overlap, a Mann–WhitneyU-test

revealed that these distributions were significantly different

above a 99% confidence level. This provides evidence that only

weaker METw magnitudes would support the presence of snow.

The two METw distributions in Fig. 8 cross at approximately

9 J kg21. This occurs right around the highest and lowest 30th

percentiles for cases with and without SN, respectively. As the

METw exceeds 9 J kg21 the ratio of percentiles for cases with

SN to those void of SN begins to quickly fall below 1. The ratio

drops at an exponential rate to below 0.2 at a METw of

15 J kg21. Using an exponential best fit for this drop in the

ratios between the two datasets from a METw of 9 to 15 J kg21

we derive the probability of SN (ProbSN) to be

ProbSN5 1540e2(0:29METw), (9)

with results limited to values between 0 and 100. Similar to the

calculation for ProbPL, the final ProbSN value is obtained by

multiplying the result of Eq. (8) by ProbIce/100.

FIG. 7. As in Fig. 6, but for wintry mix cases not containing SN.

FIG. 8. Wet-bulb melting energies (METw) for wintry mixes that contained SN and those that

did not. Cases with METw above 30 J kg21 are excluded.
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While Eq. (9) was derived from cases involving a melting

layer aloft, it can also be used to diagnose the potential for SN

in environments with a melting layer near the surface. We

tested Eq. (9) on 44 such cases and obtained a POD for SN of

0.86. This was in comparison to a PODof 0.57 using the original

Bourgouin.

The appendix contains a summary of the steps involved in

calculating probabilities for all four precipitation types.

5. Performance of the modified technique

This section evaluates the Modified technique’s perfor-

mance using the independent dataset. We also compare its

performance to that of the original Bourgouin area method,

the SBC, and the traditional top-down methodology that uti-

lizesMaxTwAloft. First we examine how well these algorithms

predict FZRA and PL either alone or as part of a mix, and also

how they predict SN as part of a mix. Then we see how closely

their predictions match the full observations. For example,

when only FZRA is reported we desire a forecast of FZRA

alone, not a FZRAPL mix. Or when FZRAPL is reported we

want only FZRAPL in the forecast.

This second, more stringent, evaluation is motivated by the

way these forecasts can be utilized operationally, especially

when QPF is derived independently of precipitation type. In

that situation, the total QPF is distributed between different

precipitation types according to the probability of each type.

For example, if the algorithm yields a 100% chance of SN, all of

the QPF would be assigned to SN. If, however, there was also a

30% chance of PL, then 77% (100/130) would go to SN and

23% (30/130) would go to PL. It is not desirable to split QPF in

this way if only one type is actually occurring. The purpose of

this more stringent test is to evaluate how well the algorithms

predict all precipitation types in the observation.

Note that with this approach, a 50%/50% mix is equivalent

to a 100%/100%mix. So there could be a forecast of 100% PL

and 100% FZRA derived from Fig. 5. Or there could be a

forecast of 100% PL that becomes a forecast of 50% PL and

50% FZRA after the ProbIce adjustment is applied. Both

forecasts are equivalent for this evaluation.

The independent dataset for this study consists of 172 events

from 2006 to 2019. Table 1 shows the number of cases for each

precipitation type. While a larger dataset would lend greater

confidence to these results, we seek a preliminary sense of how

the different methodologies compare. This also is a far larger

independent dataset than used in the original Bourgouin

(2000) study.

For the first evaluation, the performance diagram in Fig. 9

allows for direct comparison of the different techniques by

displaying four verification statistics: the probability of detec-

tion (POD), success ratio (SR, or 1 2 false alarm ratio), bias,

and critical success index (CSI) as described inRoebber (2009).

The focus here is on any cases involving FZRA or PL either

alone or as part of a mix, and SN as part of a mix.

Recall that the SBC and original Bourgouin methods are

deterministic and provide a simple ‘‘yes’’ forecast of the one

precipitation type or mix deemed most likely. In contrast, the

traditional top-down and Modified Bourgouin techniques

forecast the probability of four different types (RA, SN, PL,

and FZRA) from which the probability of mixes also can be

FIG. 9. Performance diagram for four precipitation-type methods: Modified Bourgouin (squares), original

Bourgouin (triangles), MaxTwAloft (dashes), and spectral bin classifier (X marks). Forecast comparisons are for

any FZRA (red), PL (purple), and SN (blue) in the observation. Curved lines represent the critical success index

(CSI) while the diagonal lines represent bias.
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inferred. Consider a hypothetical scenario where the proba-

bilistic output gives 60% for FZRA, 40% for PL and 30% for

SN. If the actual observation is FZRAPL, then for Fig. 9 there

would be a 0.6 hit for FZRA, a 0.4 hit for PL, and a 0.3 false

alarm for SN.

In Fig. 9, a point nearer the center diagonal and upper-right

corner shows less forecast bias (between POD and SR) and

greater skill (CSI) than a point farther away. For FZRA, and

for SN as part of a mix, the Modified Bourgouin technique

produced the largest CSI of the four methods. Note that the

SBC does not forecast SN when there is an elevated melting

layer, and the MaxTwAloft method only does so when that

layer is extremely small.

The clustering of PL scores at a lower CSI suggests this is a

more difficult forecast for all the methods, and that all but the

MaxTwAloft approach handle it similarly. Forecast skill for PL

was very similar for the Modified Bourgouin technique and

the SBC.

An important takeaway from Fig. 9 is the considerable im-

provement of the Modified Bourgouin method over the origi-

nal. For FZRA the higher POD with little change in the bias is

especially important given the considerable impacts associated

with such events. This likely is due in part to the inclusion of a

ProbIce check. In the independent dataset there were 31

FZRA cases with ProbIce# 50. For these events the Modified

Bourgouin POD was 0.96 while POD for the original was only

0.60. Similarly, when testing Eq. (7) on 60 FZDZ cases we

obtained a POD of 0.92 with a CSI of 0.79. Moreover, the

notable improvement to the Heidke skill score (HSS) for

FZRA shown in Table 2 also indicates better forecasts of

null events.

The diagram in Fig. 10 is similar to Fig. 9; however, the focus

here is how well each algorithm exactly matches the observa-

tions. The performance for cases of FZRA and PL thus rep-

resent only those in which they were the sole precipitation type

observed. Results for the various winter mixes involving the

occurrences of FZRA and PL together (FZRAPL), and with

SN (FZRAPLSN and PLSN), also are displayed.

When evaluating the skill at forecasting only a desired type

or mix, the two probabilistic algorithms are penalized for in-

cluding nonzero probabilities of undesired types. Specifically,

PureProb5
DesiredProb2max(UndesiredProbs)

max(AllProbs)
, (10)

PureMixProb5
min(DesiredProbs)2max(UndesiredProbs)

max(AllProbs)
,

(11)

where PureProb and PureMixProb represent the probability

of having only the desired type or mix, DesiredProb(s) repre-

sents the probability of the desired type(s), UndesiredProbs

represents the probabilities of each type not desired, and

AllProbs represents the probability for all four types. In

TABLE 2. Heidke skill score (HSS) for any FZRA, PL, and SN in

the observation from the traditional top-down max Tw, original

Bourgouin, the Modified Bourgouin, and the Reeves SBC. The

largest HSS for each type is shown in bold italics.

HSS FZRA PL SN

Top-down max Tw 0.27 0.11 0.36

Original Bourgouin 0.36 0.42 0.11

Modified Bourgouin 0.55 0.58 0.48

Reeves SBC 0.49 0.56 0.00

FIG. 10. As in Fig. 9, but for forecast comparisons for FZRA (red), PL (purple), FZRAPL (yellow), FZRAPLSN

(light purple), and PLSN (light blue) for four precipitation-type methods: Modified Bourgouin (squares), original

Bourgouin (triangles), MaxTwAloft (dashes), and spectral bin classifier (X marks).
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both equations the lower bound is zero so we avoid nega-

tive probabilities.

Using Eqs. (10) and (11) with the same hypothetical scenario as

before, the PureFZRA probability would be 33% [(60 2 40)/60],

PureFZRAPLwouldbe17%[(402 30)/60], andPureFZRAPLSN

would be 50% [(30 2 0)/60]. If the observation is FZRAPL

then FZRA and PL are the desired forecast types. For pur-

poses of Fig. 10 this yields a POD of 0.17, a false alarm of 0.33

for pure FZRA, and a false alarm of 0.5 for FZRAPLSN. If the

observation is PL this forecast receives no credit in Fig. 10 since

FZRA had a higher probability.

Results in Fig. 10 indicate that the Modified Bourgouin

technique continues to display improved skill at predicting

pure FZRA events over the original Bourgouin method. Also

noteworthy is its superior skill at predicting wintry mixed

events (FZRAPL, FZRAPLSN and PLSN), while having no

adverse impact on the performance for pure FZRA events.

Overall, with the exception of pure PL events, the Modified

Bourgouin technique produced superior skill and HSS values

for all precipitation types (Table 3).

6. Summary and conclusions

The original Bourgouin technique (2000) is good at detect-

ing FZRA events, but suffers from its inability to account for

the potential lack of heterogeneous ice nucleation in the pre-

cipitation generation layer and evaporative cooling in unsatu-

rated environments. The method also is hindered by its small

developmental dataset. Therefore, in an effort to make the

method a more viable precipitation type algorithm for opera-

tional forecasting, a modified version of the method was de-

veloped. This modified method is based on a much larger

dataset, utilizes the wet-bulb profile instead of temperature,

and incorporates a check for heterogeneous ice nucleation.

New functions were empirically derived to discriminate be-

tween pure FZRA, wintry mixes, and pure PL. The modified

method also allows for inclusion of SN despite an elevated

melting layer. Together these changes yield significant per-

formance improvements over the original Bourgouin and tra-

ditional top-down methods.

Because the Modified Bourgouin method was developed

using observational data, it does not suffer frommodel bias and

can be run with any numerical predictionmodel or with a blend

of several models to produce gridded forecasts. While the re-

vised method does not directly account for hydrometeor

characteristics or the effects of precipitation rates, they are indi-

rectly accounted for through the use of PoWTs. Preliminary

verification results suggest its performance compares favorably

to the more complex SBC that does attempt to account for

hydrometeor characteristics. The Modified Bourgouin algo-

rithm thus appears to show enough skill to be viable for NWP

postprocessing, while also being simple enough to apply op-

erationally for real-time forecast adjustments utilizing current

observations.

An earlier version of theModified Bourgouin technique was

tested operationally at the NWS Weather Forecast Office

(WFO) in Chicago for the winter of 2017–18, then as part of

a larger testbed with over a dozen NWS WFOs during the

2018–19 and the 2019–20 winter seasons. Forecaster feedback

has been positive. The earlier version also was adapted for

versions 3.2 and 4.0 of the NWS National Blend of Models

(NBM; Craven et al. 2018). The version of the Modified

Bourgouin technique presented in this paper represents its

latest iteration based on feedback from three anonymous re-

viewers and additional refinement by the authors.
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APPENDIX

Calculating the Probability of Each Weather Type

a. Calculating ProbSN

Step 1: ProbSNi 5 1540e2(0:29METw).

METw is all wet-bulb melting energy in the atmospheric

column. ProbSNi is constrained between 0 and 100.

Step 2: ProbSN5 (ProbIce/100)ProbSNi.

ProbIce is the probability of ice presence in the precipitation

generation layer. ProbSN is constrained between 0 and 100.

b. Calculating ProbPL (only when METw is nonzero)

Step 1: ProbPLi 5 2:3RETw 2 42 ln(METw 1 1)1 3.

TABLE 3. Critical success index (CSI) and the Heidke skill score (HSS) for events of pure FZRA, pure PL, mixes of the two (FZRAPL),

and for all combined precipitation types. The largest CSI and HSS for each type are shown in bold italics.

CSI/HSS FZRA PLSN PL FZRAPL FZRAPLSN All types

Top-down max Tw 0.54/0.35 0.04/-0.03 0.13/0.12 0.13/0.14 0.06/0.08 0.30/0.34

Original Bourgouin 0.66/0.51 0.00/0.00 0.12/0.10 0.04/0.00 0.00/0.00 0.34/0.33

Modified Bourgouin 0.70/0.62 0.37/0.48 0.19/0.24 0.14/0.13 0.17/0.22 0.43/0.50

SBC 0.70/0.57 0.00/0.00 0.18/0.20 0.05/0.05 0.00/0.00 0.39/0.38
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METw is the wet-bulbmelting energy above a near-surface

cold layer with nonzero RETw (wet-bulb refreezing energy).

ProbPLi is constrained between 0 and 100.

Step 2: ProbPL5 (ProbIce/100)ProbPLi.

ProbIce is the probability of ice presence in the precipitation

generation layer. ProbPL is constrained between 0 and 100.

c. Calculating ProbFZRA or ProbRA

Step 1: ProbFZRAi 522:1RETw 1 0:2METw 1 458.

METw is the wet-bulb melting energy. RETw is the wet-

bulb refreezing energy beneath any warm layers aloft.

ProbFZRAi is constrained between 0 and 100.

Step 2: If METw is , 5 J kg21: ProbFZRAi 5ProbFZRAi

3 0:2METw.

Step3:ProbFZRA5 (1002ProbIce)1 (ProbIce/100)ProbFZRAi.

ProbIce is the probability of ice presence in the precipitation

generation layer. ProbFZRA constrained between 0 and

100. Where surface Tw . 08C: ProbRA 5 ProbFZRA.
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